Motores de combustão interna – parte 2

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

No último post (leia aqui), pudemos explorar os princípios básicos de funcionamento de um motor de combustão interna. Hoje iremos explorar as diferentes configurações de cilindros e de válvulas que existem, bem como suas principais vantagens e desvantagens.

Formas de acionamento de válvulas

Como vimos no primeiro post da série, motores de quatro tempos e pistão alternativo necessitam de válvulas para controlar o fluxo de gases. Para garantir que o acionamento ocorra no momento correto, diversos tipos de sistemas de acionamento foram criados ao longo dos anos. Abaixo iremos ver os principais tipos de sistemas empregados durante a história. Outros sistemas foram propostos ao longo dos anos, e no futuro iremos explorar esses diferentes conceitos em novas postagens.

Válvula lateral (Side Valve)

618_4acaa83a843cb

Conhecidos como flathead nos meios automobilísticos pelo formato plano dos cabeçotes, em motores com esse tipo de acionamento o eixo comando fica próximo ao virabrequim, e as válvulas ficam na lateral do bloco, acionadas diretamente pelo eixo comando (ver imagem acima). Por serem mais simples e baratos foram muito comuns até a década de 1950, quando os motores OHV começaram a se popularizar.

Save

Save

Save

Save

Motores OHV (Over Head Valve)

No sistema OHV as válvulas são acionadas através de varetas e balancins que fazem a ligação com os cames do eixo comando, que ainda fica posicionado no bloco. Esse sistema representou uma grande evolução em relação ao sistema de válvulas laterais, pois com o posicionamento das válvulas no cabeçote foi possível adotar geometrias otimizadas para a câmara de combustão, permitindo aumentar a taxa de compressão sem o risco de detonação, além de permitir dutos de admissão e exaustão mais curtos, melhorando a eficiência volumétrica com menor perda de carga no fluxo de gases.

A partir da década de 1950 se tornaram muito comuns em carros de passeio, caindo em desuso após a década de 1980 quando foram substituídos pelos sistema OHC. Ainda podem ser encontrados em motores em V, principalmente os de origem americana, e raramente em motores de menor cilindrada voltados a baixo custo de produção.

Motores OHC (Over Head Camshaft)

Apesar dos ganhos que foram possíveis com o sistema OHV, esse sistema também apresenta algumas limitações, principalmente porque o sistema de varetas e balancins tem massa elevada, consumindo muita energia para ser aberto e exigindo molas com maior carga, resultando em maior perda de energia e exigindo grande esforço para se aumentar a faixa de giros do motor. Para resolver esses problemas, foi criado o sistema OHC (Over Head Camshaft), onde o eixo comando de válvulas sai do bloco e passar a ser montado diretamente no cabeçote, acionando as válvulas diretamente, e ligado ao virabrequim através de correias ou correntes de sincronismo.

Dentro desse sistema, ainda existe a diferenciação entre motores com um eixo comando,SOHC (Single Over Head Camshaft) e com dois eixos comando, DOHC (Double Over Head Camshaft). Em geral, motores com duas válvulas por cilindros são SOHC, enquanto motores multiválvulas (com 3, 4 ou 5 válvulas por cilindros) são DOHC, apesar de existirem exceções a essas regras.

Disposição dos cilindros

Tão importante quanto as formas de acionamento de válvulas para definir as características de um motor, é a forma como seus cilindros ficam dispostos. Isso e a quantidade de cilindros influenciam diretamente no espaço necessário para que sejam instalados, troca térmica com o meio e nível de vibrações que

 Motores em linha

Motores em linha tem seu nome devido a disposição dos seus cilindros, enfileirados em uma linha reta, como na imagem acima. São os mais comuns nos carros que encontramos no Brasil, e são encontrados principalmente em versões de 3, 4 e 6 cilindros.

Motores em V

Diferente dos motores em linha, nos motores em V os cilindros ficam dispostos inclinados em relação aos outros, com duas bielas ligadas ao mesmo mancal do virabrequim. São mais comumente encontrados em versões de 6, 8 e 12 cilindros, em motores de alto desempenho. Ângulos comuns do V são 45°, 60°, 90° e 180°. O primeiro motor em V foi fabricado ainda em 1889 pela Daimler, baseado no projeto de Wilhelm Maybach.

Motores boxer

Os chamados motores boxer são motores onde os pistões trabalham na horizontal. São diferentes dos motores V com ângulo de 180° pois as bielas ficam posicionadas em mancais diferentes, defasados em 180°. A origem do nome vem do movimento dos pistões, que se assemelha a boxeadores trocando socos, e o conceito foi desenvolvido pelo alemão Karl Benz ainda em 1896. Sua aplicação mais conhecida são os motores VW refrigerados a ar de Fusca, Kombi e cia, e são os únicos motores naturalmente balanceados para qualquer número par de cilindros. Hoje podem ser encontrados na maioria dos automóveis Subaru e Porsche, além de serem muito comuns em aplicações aeronáuticas.

Motores VR (V-Reihenmotor)

Criados pela Volkswagen, os motores VR foram a solução encontrada pela marca alemã para utilizar motores maiores em seus modelos compactos, cujo vão motor havia sido projetado para receber motores de no máximo quatro cilindros. Os motores VR (do alemão V-Reihenmotor, ou motor V em linha), são motores em V cujo ângulo entre as bancadas é muito agudo (10,5° ou 15°), permitindo a utilização de apenas um cabeçote e dois eixos comando, sendo um meio termo entre o baixo custo dos motores em linha e o melhor aproveitamento de espaço dos motores em V.

Motores W

Motores em W são pouco comuns durante a história, as primeira aplicações tendo surgido no início do século XX para aplicações aeronáuticas. Consiste em três bancos de cilindros unidos por um único virabrequim, como podemos ver no esquema abaixo. A aplicação automotiva mais recente desse tipo de motor foi o malfadado projeto Life de Fórmula 1, em 1990.

Motores em W do grupo Volkswagen (V-VR)

Outro tipo de motor comumente chamada de motor em W são os utilizados pelo grupo VW em carros como Bugatti Veyron e outros. Consiste basicamente em dois motores VR unidos pelo mesmo virabrequim, sendo chamados também de motores V-VR.

Outro tipo de motor comumente chamada de motor em W são os utilizados pelo grupo VW em carros como Bugatti Veyron e outros. Consiste basicamente em dois motores VR unidos pelo mesmo virabrequim, sendo chamados também de motores V-VR.

Motores radiais

Apesar de pouco utilizados em automóveis, os motores radiais tiveram seus dias de glória na aeronáutica, até que as turbinas se tornaram dominantes na aviação. Como o próprio nome já diz, nesses motores os pistões se movem em torno do raio de giro do virabrequim. Hoje sua aplicação é limitada, porém ainda são fabricados para uso em aviões acrobáticos e motores diesel para geradores.

Motores Radiais Multibanco

Uma variação sobre o conceito de motores radiais, os motores multibanco consistem em dois ou mais motores radiais unidos pelo mesmo virabrequim. Assim como os motores radiais, entraram em desuso com a chegada das turbinas a indústria aeronáutica. Raramente foram aplicados em automóveis, uma notável exceção sendo o carro de corrida Monaco-Trossi de 1936.

Motores Wankel

Também conhecidos como motores de pistão rotativo, o conceito dos motores Wankel foi criado pelo alemão Felix Wankel, e aprimorado por Hanns Dieter Paschke. Foi criado como um motor de quatro tempos, mas sem as complicações de sistemas de sincronismo e biela-virabrequim. Seu funcionamento é baseado em um rotor de formato triangular que gira movido por um eixo excêntrico dentro de uma carcaça de formato epitrocoidal. Quando um ciclo começa, a passagem da ponta do rotor (A) pela janela de ignição dá início ao processo de admissão para a câmara de compressão, até o ponto onde as velas de ignição produzem a centelha, dando início a combustão. Com isso a queima da mistura ar-combustível da início ao processo de expansão, e quando o ponto A passa pela janela de exaustão os gases da combustão são expulsos da câmara de combustão.

O primeiro automóvel de rua a utilizar um motor Wankel foi o NSU Spider, em 1964, e inicialmente diversas montadoras foram atraídas pela possibilidade de um motor mais simples e leve. Recentemente a única empresa a ainda desenvolver o conceito foi a japonesa Mazda, porém esses motores foram descontinuados em 2012 por serem incapazes de atingir as cada vez mais exigentes metas de emissão de poluentes.

Fontes:

SAE Internal Combustion Engine Handbook. Chapter 2: Definition and Classification of Reciprocicating Piston Engines.

SAE Internal Combustion Engine Handbook. Chapter 7: Engine Components.

 

 

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Motores de combustão interna: parte 1

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Se você já abriu o capô do seu carro e se perguntou como aquele monte de metal, plástico, tubos e fios tem capacidade de fazer algo tão grande e pesado se mover, ou se você gostaria de saber o que significam termos como dois tempos, ciclo Otto e ciclo Diesel, você veio ao lugar certo. Nessa série de postagens iremos explorar os princípios de funcionamento e características principais dos motores de combustão interna mais comuns.

Introdução: tipos de motores

Os motores de combustão interna fazem parte de uma categoria de máquinas de fluxo chamadas de máquinas de deslocamento positivo. Dentro dessa categoria se enquadram máquinas motrizes, que produzem energia mecânica através do trabalho de um fluido, como os motores, e máquinas geratrizes que consomem energia mecânica para fornecer trabalho a um fluido, como compressores ou a bomba de água abaixo:

Bomba ZM 51. Fonte: ZM Bombas [1].

Bomba ZM 51. Fonte: ZM Bombas [1].

Existem diversos tipos de mecanismos para máquinas de deslocamento positivo, como pistões, rotores, engrenagens e diversas outras que iremos explorar no futuro, mas por hoje iremos nos concentrar nos motores de pistões alternativos, que tem seu funcionamento baseado no mecanismo biela-manivela.

E.torQ

Motor E.torQ. Fonte: FPT Powertrain [2].

Princípios mecânicos: O mecanismo biela-manivela

motor

Exemplo de um mecanismo biela-manivela de um motor de quatro cilindros.

Como dito anteriormente, o principal elemento necessário para compreender o funcionamento da maioria dos motores é o mecanismo biela-manivela. Esse mecanismo é capaz de transformar movimento linear em movimento rotacional e vice-versa. Na imagem abaixo podemos ver esse sistema como aplicado em um motor, e seus principais componentes:

Biela-manivela

Observando o esquema acima, podemos entender o funcionamento básico do mecanismo biela-manivela em um motor: dentro do cilindro (1) a mistura de ar e combustível entra em combustão, e com isso se expande movendo o pistão (2) para baixo. Como o pistão está preso a biela (3) e a mesma ao virabrequim (4), o movimento linear é transformado em rotação do virabrequim, e essa rotação é a que é transferida até as rodas dos nossos automóveis. Depois do ciclo completado, o pistão é novamente impulsionado para cima devido a inércia de rotação, dando início a outro ciclo.

Ciclos de funcionamento

Após entender o funcionamento do mecanismo biela-manivela, vamos ver quais são os principais ciclos de funcionamento de um motor, ou seja, quais as principais formas pelas quais um motor “respira”.

Ciclo quatro tempos

VW EA 211 R3 1.0

O motor EA211 da Volkswagen é um exemplo de motor 4 tempos moderno. Fonte: Automotive Engineer [3].

O ciclo quatro tempos é criação do engenheiro francês Alphonse Beau de Rochas, mas a sua primeira implementação bem-sucedida foi pelas mãos do alemão Nikolaus Otto, ainda em 1876. Hoje praticamente todos os carros e motos que vemos na rua se utilizam de motores quatro tempos, que são assim chamados por que seu ciclo de trabalho é composto por quatro etapas bem distintas entre si:

Ciclo_4_tempos

As etapas do ciclo quatro tempos. Fonte: Manutenção Aeronáutica [4].

  • Admissão: o primeiro tempo do motor a válvula de admissão se abre, permitindo a entrada da mistura de ar e combustível para o cilindro, enquanto o pistão desce;
  • Compressão: no segundo tempo, ambas as válvulas estão fechadas e o pistão começa a subir novamente, comprimindo a mistura;
  • Explosão: o terceiro tempo o trabalho é realizado pelo motor, com a explosão da mistura que empurra o pistão para baixo;
  • Exaustão: o quarto e último tempo é chamado de exaustão, quando a válvula de exaustão se abre para que o pistão possa expulsar o resultado da queima de combustível para fora do motor, começando o ciclo novamente.

Na animação abaixo podemos ver as etapas de funcionamento de um motor quatro tempos a medida que elas acontecem:

4-Stroke-Engine

Principais vantagens do ciclo quatro tempos:

  • Melhor controle da combustão pela distinção dos eventos em cada etapa, melhorando a eficiência e reduzindo as emissões de poluentes;
  • Melhor lubrificação por contar com sistema de lubrificação isolado

Principais desvantagens:

  • Maior peso em relação a um motor dois tempos de desempenho equivalente, pois ocorre uma combustão a cada duas rotações do virabrequim;
  • Maior complexidade devido às válvulas e sistema de acionamento das mesmas;
  • Maior custo de produção em relação a um motor dois tempos;

Ciclo dois tempos

Rotax_125_Max

Motor Rotax 125 Max evo. Fonte: Rotax [5].

Já o ciclo dois tempos é obra do engenheiro escocês Dugald Clerk, que o criou em 1878 através da simplificação do ciclo de quatro tempos de Otto. Hoje sua aplicação em veículos automotores é limitada, sendo muito comum ainda em máquinas como motosserras e roçadeiras, e também em karts. Como o próprio nome já diz, nesses motores o ciclo é composto por duas etapas bem distintas, como podemos ver abaixo:

Ciclo_2_tempos

As etapas do ciclo dois temos. Fonte: Motonline [6].

  • Tempo de força: diferente do ciclo quatro tempos, os motores quatro tempos não utilizam válvulas para o controle da entrada e saída de mistura ar-combustível no cilindro. Ao invés disso, janelas nas laterais do cilindro tem essa função, sendo a de admissão em posição mais baixa que a de exaustão. O primeiro tempo começa logo após a explosão, quando o pistão desce abrindo a janela de exaustão e os gases de combustão são expulsos, criando um vácuo no cilindro. Quando o pistão desce ainda mais ele abre também a janela de admissão, de forma que o vácuo criado começa a aspirar a mistura que estava presente no interior do motor.
  • Tempo de compressão: quando o pistão inicia novamente seu processo de subida, acaba bloqueando a janela de entrada de mistura, e no processo termina de expulsar os gases de combustão. Continuando esse movimento, também a janela de exaustão é fechada até o momento onde ocorre uma nova explosão, dando início a um novo ciclo.

No gif abaixo podemos ter uma visão melhor de como essas duas etapas ocorrem:

Two-Stroke_Engine

Principais vantagens:

  • Menor peso em relação a um motor de quatro tempos equivalente, pois a cada rotação do virabrequim ocorre uma combustão;
  • Maior simplicidade devido a ausência de válvulas e sistemas de sincronismo;
  • Menor custo de produção;

Principais desvantagens:

  • Maior emissão de poluentes devido a necessidade de mistura de óleo ao combustível para lubrificação;
  • Baixa eficiência devido a dificuldade de controlar a mistura dos gases de combustão com a mistura ar-combustível, pois os processos não possuem distinção clara;
  • Dificuldade com lubrificação devido a impossibilidade de ter-se um sistema de lubrificação mais complexo.

Princípios Termodinâmicos

No último tópico abordado nesse post, agora iremos visualizar como os motores se dividem quanto ao seu ciclo termodinâmico, e entender quais os principais ciclos hoje encontrados em motores de combustão interna.

Princípios Termodinâmicos

Finalmente, agora iremos entender como um motor é capaz de gerar energia a partir da queima do combustível, vendo os principais ciclos termodinâmicos hoje encontrados em motores de combustão interna

Ciclo Otto

O ciclo Otto é aquele encontrado em motores a gasolina e a álcool, sejam eles de dois ou quatro tempos. Foi idealizado por Beau de Rochas, mas o primeiro a implementá-lo com sucesso foi o alemão Nicolaus Otto, em 1876.

Para entender ser princípio, podemos analisar o ciclo Otto ideal, que é uma idealização desconsiderando perdas e processos irreversíveis.

Diagrama P x V do ciclo Otto ideal. Fonte:

Diagrama P x V do ciclo Otto ideal. Fonte: MSPC [7].

É composto pelos seguintes processos:

  • 0-1: admissão isobárica (com pressão constante), do momento em que a válvula de admissão se abre até que o pistão atinja seu ponto mais baixo;
  • 1-2: compressão adiabática (sem troca térmica com o ambiente), quando a válvula de admissão e o pistão se desloca de seu ponto mais inferior até o superior, aumentando a pressão da mistura ar-combustível;
  • 2-3: combustão isocórica, que equivale a queima do combustível a volume constante, iniciada a partir de uma centelha emitida pela vela de ignição;
  • 3-4: expansão adiabática, onde o trabalho é fornecido pela expansão dos gases resultantes da combustão;
  • 4-1: Exaustão isovolumétrica, referente a fase de abertura da válvula de exaustão, onde os gases queimados são expulsos para o ambiente, igualando a pressão a do ambiente;
  • 1-0: Exaustão isobárica, referente ao movimento do pistão no sentido de exaurir o restante dos gases remanescentes da queima.

Ciclo Diesel

Diagrama P x V do ciclo Diesel ideal. Fonte:

Diagrama P x V do ciclo Diesel ideal. Fonte:

O ciclo Diesel, como o nome já diz, é aquele encontrado nos motores movidos a Diesel, encontrado principalmente em utilitários. Diferentemente dos motores Otto, nos motores Diesel a ignição não necessita de velas de ignição, ocorrendo pela injeção do combustível em alta pressão diretamente da câmara de combustão. Nesse caso a ignição acontece pois quando comprimido aumenta de temperatura, chegando ao ponto de iniciar a combustão. Novamente vamos usar o ciclo Diesel ideal para entender seu princípio de funcionamento.

  • 0-1: admissão isobárica (com pressão constante), do momento em que a válvula de admissão se abre até que o pistão atinja seu ponto mais baixo;
  • 1-2: compressão adiabática (sem troca térmica com o ambiente), quando a válvula de admissão e o pistão se desloca de seu ponto mais inferior até o superior, aumentando a pressão da mistura ar-combustível;
  • 2-3: combustão isobárica, quando o pistão atinge seu ponto superior e o combustível começa a ser injetado na câmara de combustão, prosseguindo por parte do movimento de descida;
  • 3-4: expansão adiabática, quando a combustão termina e o pistão continua seu movimento de descida, realizando trabalho útil devido a expansão dos gases de combustão;
  • 4-1: Exaustão isovolumétrica, referente a fase de abertura da válvula de exaustão, onde os gases queimados são expulsos para o ambiente, igualando a pressão a do ambiente;
  • 1-0: Exaustão isobárica, referente ao movimento do pistão no sentido de exaurir o restante dos gases remanescentes da queima.

Nesse post vimos as formas mais comuns como os motores de combustão interna se apresentam, porém diversas outras formas foram pensadas, tanto na forma de diferentes ciclos termodinâmicos, quanto na forma de diferentes mecanismos e ciclos de funcionamento. Abaixo você pode encontrar exemplos de diversos outros sistemas que foram propostos ou que estão sendo propostos na sempre constante busca por maior eficiência.

Princípios mecânicos:

Motor de pistão rotativo X-Mini: http://nivelandoaengenharia.com.br/blog/2016/07/31/revolucoes-por-minuto-inovacoes-no-mundo-dos-motores-parte-2/

Motor de taxa de compressão variável Nissan VC-T: http://nivelandoaengenharia.com.br/blog/2016/08/20/revolucoes-por-minuto-inovacoes-no-mundo-dos-motores-parte-3/

Princípios termodinâmicos:

Ciclo HEHC: http://nivelandoaengenharia.com.br/blog/2016/07/31/revolucoes-por-minuto-inovacoes-no-mundo-dos-motores-parte-2/

Fontes:

SAE Internal Combustion Engine Handbook. Chapter 2: Definition and Classification of Reciprocicating Piston Engines.

SAE Internal Combustion Engine Handbook. Chapter 5: Thermodynamic Fundamentals.

Manual de Tecnologia Automotiva Bosch, 25ª Edição. Motor de ignição por centelha (ciclo Otto), pgs. 482-486.

Manual de Tecnologia Automotiva Bosch, 25ª Edição. O motor a Diesel, pgs. 487-492.

Moran, Michael J., Shapiro, Howard N. Princípios de Termodinâmica para Engenharia, 4ª Edição. Capítulo 9: Sistemas de Potência a Gás.

Imagens:

[1]: Retirado de: Bombas ZM acionadas por roda d’água. Disponível em: http://www.zmbombas.com/bombas/. Data de acesso: 27/02/2017.

[2]: Retirado de: Fiat Punto 2016. Disponível em: http://www.fiat.com.br/tablet/carros/novo-punto.html. Data de acesso: 28/02/2017.

[3]: Retirado de: Volkswagen up. Disponível em: http://ae-plus.com/vehicle-development/volkswagen-up/page:3. Data de acesso: 28/02/2017.

[4]: Retirado de: Motores a pistão. Disponível em: http://aeronaves2014.blogspot.com.br/p/motores-pistao.html. Data de acesso: 01/03/2017.

[5]: 125 MAX evo. Disponível em: http://www.rotax-kart.com/en/Products/MAX-Engines/1-125-MAX-evo. Data de acesso: 01/03/2017.

[6]: Retirado de: Montadora espanhola destaca qualidades dos motores dois tempos. Disponível em: http://www.motonline.com.br/noticia/montadora-espanhola-destaca-qualidades-dos-motores-dois-tempos/. Data de acesso: 01/03/2017.

[7]: Retirado de: Termodinâmica V-20. Disponível em: http://www.mspc.eng.br/termo/termod0520.shtml. Data de acesso: 03/03/2017.

[8]: Retirado de: Termodinâmica V-25. Disponível em: http://www.mspc.eng.br/termo/termod0525.shtml. Data de acesso: 03/03/2017.

Save

Save

Save

Save

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Revoluções por minuto: inovações no mundo dos motores – Parte 3

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Dando continuidade a nossa séria de postagens (leia aqui a parte 1 e a parte 2), vamos conhecer hoje um motor desenvolvido pela Infiniti (divisão de carros de luxo da Nissan). Anunciado oficialmente em 14/08, o chamado Infiniti VC-T promete ser o primeiro motor de produção seriada a contar com a tecnologia de taxa de compressão variável. Abaixo vamos conhecer esse motor e quais vantagens essa tecnologia pode trazer.

Infiniti VC-T engine. Fonte: Divulgação [1].

Motor Infiniti VC-T. Fonte: Divulgação [1].

O que é taxa de compressão?

A taxa de compressão é definida como o resultado da divisão do volume máximo (V máx) do cilindro pelo volume mínimo (V mín), e geralmente é expressa como proporção (por exemplo 12:1, ou seja, o volume máximo é 12 vezes maior que o volume mínimo). Pensando num motor em linha na vertical, esses volumes ocorrem, respectivamente, quando o pistão está no ponto mais baixo de seu ciclo (PMI – Ponto Morto Inferior) e quando  o pistão se encontra no ponto mais elevado de seu ciclo (PMS – Ponto Morto Superior).

Taxa de compressão

Em motores de ignição por centelha, a taxa de compressão é limitada por fatores como detonação e auto-ignição. Para cada combustível existe uma faixa de taxa de compressão ideal (aproximadamente 9:1 para gasolina e 12:1 para o etanol), que podem ser alterados com mudança de parâmetros e a adoção de tecnologias como injeção direta. Como regra geral, a eficiência termodinâmica do motor aumenta junto com a taxa de compressão em situações de carga parcial, enquanto em carga plena a eficiência termodinâmica tender a ser reduzida com o aumento da taxa.

Estratégia básica do sistema VC-T. Fonte: Divulgação [1].

Estratégia básica do sistema VC-T. Fonte: Divulgação [1].

Esses fatores são importantes para que possamos entender os benefícios dessa tecnologia: a estratégia básica da Nissan para o motor VC-T será adotar valores mais altos de taxa de compressão em situações de carga parcial, para melhorar a eficiência geral do motor, e em situações de carga plena reduzir a taxa de compressão para diminuir o risco de detonação por compressão. Os ganhos que podem ser obtidos por esse tipo de sistema são consideráveis, e junto à sistemas de admissão que não dependam de perfis de eixo comando são o santo graal dos motores a combustão interna, o tipo de tecnologia capaz de revolucionar o setor. Aqui no Brasil esse tipo de tecnologia seria ainda mais proveitosa, pois além dos fatores já citados, permitiria ao motor trabalhar na faixa ótima tanto para etanol quanto para gasolina, que é um dos calcanhares de Aquiles dos nossos motores flex atuais.

Entendendo o sistema

Apesar de na teoria ser a solução ideal, construir um sistema que permita variar a taxa de compressão é algo muito complexo. Isso porque a taxa de compressão é definida fisicamente pelos pontos mortos superior e inferior, o que por sua vez é definido pelo curso do virabrequim, e promover mudanças nessa medida requerem um sistema complexo. Mais do que isso, o torque para promover essa alteração é considerável, e a confiabilidade deve ser máxima, já que uma falha nesses componentes geralmente resulta em dano considerável do motor.

Componentes do sistema VC-T comparado a um motor convencional.

Componentes do sistema VC-T comparado a um motor convencional. Fontes: Patente US 6.505.582 B2 [2].

No sistema VC-T, ao invés de ligar o pistão diretamente ao moente do virabrequim através de uma biela como no sistema convencional (imagem da direita), o pistão (9) é ligado por uma haste (3) a uma das extremidades de um balancim (4). Esse balancim, por sua vez é quem está ligado ao moente do virabrequim (5), transformando o movimento linear do pistão em movimento rotacional. Ao mesmo tempo, a outra extremidade do balancim (4), está ligada por uma biela (7) a um eixo excêntrico (8). A variação no ângulo desse eixo excêntrico promove uma rotação do balancim, e essa rotação faz com que os pontos de PMI e PMS mudem, aumentando ou reduzindo a taxa de compressão.

Detalhe do sistema de eixo excêntrico do sistema VC-T. Fonte: Patente US

Detalhe do sistema de eixo excêntrico do sistema VC-T. Fonte: Patente US 2013/0327302 A1 [3].

Conforme a imagem acima, podemos ver que essa rotação do eixo excêntrico é promovida por um atuador elétrico (19) que movimenta uma haste (24) que é presa ao excêntrico através de um pino. O motor elétrico (19), não aciona diretamente a haste, e essa atuação se dá através do que é chamado pela Nissan de Harmonic Drive, que iremos ver logo abaixo:

Componentes do sistema Harmonic Drive. Fonte: Patente EP 2884077 A1 [4].

Componentes do sistema Harmonic Drive. Fonte: Patente EP 2884077 A1 [4].

O Harmonic Drive consiste de uma arranjo com uma engrenagem anular interna (51), uma engrenagem externa flexível (52) e um gerador de ondas (53). A engrenagem flexível é composta por um corpo (55) com dentes externos (59), diafragma (56). O corpo tem formato de cilindro, porém quando o gerador de ondas (53) é inserido o corpo é deformado e adquire um formato elíptico, de forma que os dentes tem contato com a engrenagem externa em apenas dois pontos. As funções principais desse sistema são permitir uma resposta mais rápida por agir como redutor de velocidade quando o motor aciona o mecanismo de variação de taxa de compressão. De acordo com os desenhos, o Harmonic Drive fica montado em uma carcaça presa a lateral do bloco e do cárter, que é preenchida com óleo até um determinado nível e conta com um sensor de nível de óleo. Uma das dificuldades no sistema é garantir a lubrificação em situações onde a taxa de compressão permanece constante. Isso porque nessas situações parte do trem de engrenagens fica por um período sem contato com óleo. Nessa situação, a central eletrônica envia um sinal para o motor elétrico para gerar um rápido movimento de swing, de forma a não alterar sensivelmente a taxa de compressão e promover a agitação do óleo para garantir um filme de lubrificante para o sistema.

O motor será apresentado oficialmente para o público durante o Salão do Automóvel de Paris, no dia 29 de setembro de 2016, e especula-se que o motor terá sua primeira aplicação já em 2018.

Fontes:

Infiniti VC-T: The world’s first production-ready variable compression ratio engine. Disponível em: https://newsroom.nissan-global.com/releases/infiniti-vc-t-the-worlds-first-production-ready-variable-compression-ratio-engine. Data de acesso: 17/08/2016.

SAE Internal Combustion Engines Handbook: Chapter 3.2: Compression Ratio.

Moteki, Katsuya, et al. Variable Compression Ratio Mechanism of Reciprocating Internal Combustion Engine. US 6.505.582 B2. Publicado em: 14/01/2003. Disponível em: https://www.google.ch/patents/US6505582. Data de acesso: 18/08/2016.

Hiyoshi, Ryosuke. Variable Compression Ration Engine. US 2013/0327302 A1. Publicado em 12/12/2013. Disponível em: https://www.google.com/patents/US20130327302. Data de acesso: 18/08/2016.

Hiyoshi, Ryosuke et al. Control device and control method for variable compression ratio internal combustion engines. EP 2884077 A1. Publicado em: 17/06/2015. Disponível em: https://google.com/patents/EP2884077A1?cl=nl. Data de acesso: 18/08/2016.

Imagens:

[1]: Retirado de: Infiniti VC-T: The world’s first production-ready variable compression ratio engine. Disponível em: https://newsroom.nissan-global.com/releases/infiniti-vc-t-the-worlds-first-production-ready-variable-compression-ratio-engine. Data de acesso: 17/08/2016.

[2]: Retirado de: Moteki, Katsuya, et al. Variable Compression Ratio Mechanism of Reciprocating Internal Combustion Engine. US 6.505.582 B2. Publicado em: 14/01/2003. Disponível em: https://www.google.ch/patents/US6505582. Data de acesso: 18/08/2016.

[3]: Retirado de: Hiyoshi, Ryosuke. Variable Compression Ration Engine. US 2013/0327302 A1. Publicado em 12/12/2013. Disponível em: https://www.google.com/patents/US20130327302. Data de acesso: 18/08/2016.

 

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Revoluções por minuto: inovações no mundo dos motores – Parte 2

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Na parte 1 dessa série (se você ainda não viu, leia aqui), falamos sobre um motor cuja grande revolução está na aplicação de plásticos de engenharia para a fabricação de boa parte das peças. Hoje falaremos de um motor que é mais tradicional quanto aos materiais, mas que utiliza um ciclo termodinâmico totalmente diferente daquilo que estamos acostumados.

Parte 2: X-Mini

Motor X-Mini a Gasolina. Fonte: LiquidPiston [1].

Motor X-Mini a Gasolina. Fonte: LiquidPiston [1].

A base para a criação dos motores X-Mini surgiu com a criação de um novo ciclo termodinâmico pelos Drs. Nikolay Shkolnik e Alexander Shkolnik em 2003. Esse ciclo, chamado HEHC (High Efficiency Hybrid Cycle, ou em tradução livre Ciclo Híbrido de Alta Eficiência), consiste em uma combinação de características dos ciclos Otto, Diesel e Atkinson.

Ciclo HEHC comparado aos tradicionais ciclos Ottoe e Diesel. Fonte: LiquidPiston [1].

Ciclo HEHC comparado aos tradicionais ciclos Ottoe e Diesel. Fonte: LiquidPiston [2].

No gráfico acima podemos ver o ciclo termodinâmico HEHC ao lado dos ciclos Otto e Diesel, e esse gráfico irá nos ajudar a entender porque o motor X-Mini é mais eficiente. Para interpretar isso, é importante saber que o trabalho de um gás durante uma transformação pode ser definido como a diferença entre o produto da sua pressão pelo volume ao longo da transformação. Simplificando, a área do gráfico sob a curva da expansão (3H a 4A) representa a quantidade de trabalho disponível pela queima do combustível, enquanto a área sob a curva do compressão (1 a 2D,H) representa o trabalho gasto para comprimir o fluido de trabalho até a queima do combustível. No vídeo abaixo veremos o ciclo HEHC, e depois uma explicação sobre o que está acontecendo em cada fase:

Compressão (1 – 2D,H): Na primeira etapa o motor comporta-se como qualquer outro, comprimindo o ar admitido. Duas variações são possíveis para o ciclo, uma com taxa de compressão mais elevada para possibilitar a ignição por compressão (CI-HEHC), e outra com taxa de compressão mais baixa para ignição por centelha (SI-HEHC).

Combustão (2D,H – 3H): pelas características construtivas do motor a combustão ocorre praticamente a volume constante (ver vídeo em 1:18), o que aumenta a eficiência. Isso ocorre porque praticamente todo o calor fornecido pela queima do combustível cria um aumento de pressão do fluido de trabalho, aumentado a taxa de expansão real e a quantidade de trabalho utilizável que pode ser aproveitado. Sem dados concretos sobre o motor é difícil afirmar com certeza, porém de forma superficial é possível supor que esse tipo de construção do motor apresenta vantagens nesse quesito em relação aos motores de pistão convencionais. Observando pelo gráfico, quanto mais vertical for a reta 2D,H – 3H, ou seja, quanto mais próximo o processo for de uma combustão a volume constante, maior será a energia disponível.

Expansão (3H – 4A): Outro ponto curioso do motor X-Mini, a expansão se dá em um volume maior que o da compressão, uma característica adotada do Ciclo Atkinson, que hoje é induzida em motores de pistão principalmente em veículos híbridos, através da utilização de estratégias de comando de válvulas variável. Essa característica trás a vantagem de permitir que se retire mais trabalho do gás de combustão, pois o máximo trabalho realizável por um fluido é atingido quando sua pressão se torna o mais próxima daquela para onde o fluido será descarregado. Graficamente, quanto menor a pressão e o volume nos quais o fluido de trabalho for descarregado para o ambiente, maior será a área sob a curva, e consequentemente mais energia poderá ser aproveitada.

Resfriamento a volume constante (4A – 4B): nesta etapa o ciclo HEHC se comporta como o ciclo Otto, rejeitando calor para o ambiente.

Exaustão e admissão (4B – 1): Aqui também o motor X-Mini se comporta como qualquer motor de combustão interna.

A construção do motor

Principais componentes do motor X-Mini. Fonte: LiquidPiston [1].

Principais componentes do motor X-Mini. Fonte: LiquidPiston [1].

A LiquidPiston também inovou na forma construtiva do motor. Os motores X são motores rotativos como os famosos Wankel, porém sua construção é bem diferente. Conhecendo o calcanhar de Aquiles dos motores Wankel que se encontra na vedação entre as câmaras de combustão (os selos aplicados às bordas do rotor se desgastam com facilidade, reduzindo a pressão efetiva na câmara e aumentando o consumo de combustível, além de necessitar a adição de grandes quantidades de lubrificante a mistura ar-combustível, aumentando os índices de poluição). Nos motores X, contudo, os selos foram movidos para a carcaça do motor (ver item 2 da imagem acima), onde podem ser lubrificados com mais facilidade, o que pode resolver o problema do desgaste excessivo dos motores rotativos.

Diferente dos motores rotativos Wankel, Fonte: HowStuffWorks Auto [2].

Diferente dos motores rotativos Wankel, Fonte: HowStuffWorks Auto [3].

Os criadores alegam ainda que essa construção de motor apresenta baixos níveis de vibração, ruído e uma redução de massa da ordem de 30% comparados a motores a pistão convencionais de capacidade semelhante. As principais aplicações previstas são equipamentos portáteis como moto-serras e cortadores de grama, geradores portáteis e unidades de potência auxiliares. No vídeo abaixo podemos ver uma apresentação dos principais componentes e funcionamento físico do motor:

Vejo alguns desafios a serem compreendidos e enfrentados durante o desenvolvimento do motor: um deles está em seu sistema de admissão, pois a mesma se dá por um canal interno ao virabrequim. Isso com certeza irá gerar uma interação aerodinâmica curiosa entre o ar admitido e o eixo rotante. Outra dificuldade será garantir uma boa vedação entre a saída do eixo e o canal que percorre o rotor, o que provavelmente irá necessitar selos especiais e controles de montagem rigorosos para manter um bom alinhamento entre os canais, com o risco de prejudicar o rendimento do motor por perdas na admissão.

X-Mini a gasolina

O primeiro protótipo do motor movido a gasolina é bem pequeno, com cilindrada de apenas 70 cm³, mas potência de cerca de 3,5 HP a 10.000 rpm. Para analisar o comportamento da frente de chama durante a combustão nesse motor, o pessoal da LiquidPiston substituiu a tampa traseira do motor por uma especial feita em quartzo e filmou a com uma câmera especial capaz de registrar 20.000 frames por segundo, gerando o vídeo abaixo:

Além disso, eles também disponibilizaram o vídeo de um teste em dinamômetro de bancada, e recentemente o motor foi montado em um kart, a primeira vez que o X-Mini foi testado fora do ambiente de laboratório.

X-Mini a diesel

Além do motor a gasolina, também está sendo desenvolvida uma versão a movia a diesel do motor X-Mini. Os protótipos atuais fora criados apenas como prova de conceito, e são capazes de rodar por curtos períodos com baixa carga, atingindo eficiência de 33% nesse regime, que é comparável ao rendimento entre 30 e 40% que é atingido por motores Diesel convencionais em carga parcial. A grande vantagem, como pode ser visto abaixo é a construção compacta do motor X-Mini em relação a um motor Diesel normal.

Motor Diesel de 35 HP ao lado do protótipo do X-Mini com potência de 40 HP. Fonte: LiquidPiston [3].

Motor Diesel de 35 HP ao lado do protótipo do X-Mini com potência de 40 HP. Fonte: LiquidPiston [4].

Fontes:

How It Works. Disponível em: http://liquidpiston.com/technology/how-it-works/. Data de acesso: 08/12/2014.

HEHC Cycle. Disponível em: http://liquidpiston.com/technology/hehc-cycle/. Data de acesso: 08/12/2014.

X Mini Gasoline 70cc Engine Prototype: Disponível em: http://liquidpiston.com/technology/x-mini-gasoline/. Data de acesso: 08/12/2014.

X Diesel Engines. Disponível em: http://liquidpiston.com/technology/x-engines-diesel/. Data de acesso: 08/12/2014.

SAE Internal Combustion Engines Handbook: Chapter 5: Thermodynamic Fundamentals.

Moran, Michael J.; Shapiro, Howard N.: Princípios de Termodinâmica para a Engenharia; Capítulo 9: Sistemas de Potência a Gás – Motores de Combustão Interna, pg 378 a 388.

Imagens:

[1]: Retirado de: X Mini Gasoline 70cc Engine Prototype: Disponível em: http://liquidpiston.com/technology/x-mini-gasoline/. Data de acesso: 08/12/2014.

[2]: Retirado de: HEHC Cycle. Disponível em: http://liquidpiston.com/technology/hehc-cycle/. Data de acesso: 08/12/2014.

[3]: Retirado de: Nice, Karim; How Rotary Engines Works. Disponível: http://auto.howstuffworks.com/rotary-engine2.htm. Data de acesso: 28/07/2016.

[4]: Retirado de: X Diesel Engines. Disponível em: http://liquidpiston.com/technology/x-engines-diesel/. Data de acesso: 08/12/2014.

 

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Revoluções por minuto: inovações no mundo dos motores – Parte 1

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Nos últimos anos a pressão por fontes de energia renováveis e redução nas emissões de poluentes é a grande pauta da indústria. Nesse contexto, os motores estão no centro das atenções e novas tecnologias têm sido exploradas tanto no âmbito de materiais quanto no de processos de fabricação, buscando reduzir massa  e também atingir uma maior eficiência energética, através da exploração de novos conceitos de funcionamento. Para iniciar essa série de posts, o escolhido é um projeto da década de 80 que foi recentemente ressuscitado, e que provavelmente ainda está anos a frente de nosso tempo.

Parte 1: Polimotor

Se há poucos anos as sobrancelhas ainda se levantavam no mercado brasileiro quando se falava em motores com bloco de alumínio, o que você pensaria ao ouvir falar em um motor fabricado de plástico? Motores são máquinas térmicas conhecidas por não serem lá muito eficientes, pois como regra geral podemos dizer que para cada cavalo de potência gerado, outro deverá ser dissipado pelo sistema de arrefecimento sob forma de calor. Com temperaturas na faixa de 250 a 300 °C sendo atingidas, poucas pessoas pensariam em polímeros como alternativa viável de material de construção, porém esse não foi o credo do engenheiro Matty Holtzberg, que começou a oferecer componentes como varetas de válvula, bielas e retentores de mola no mercado de preparação de automóveis dos EUA. Suas peças atingiram relativo sucesso entre os entusiastas, o que o levou a estabelecer uma meta mais ousada: desenvolver um motor com tantos componentes quanto possível em plástico. Para isso foi fundada a Polimotor Research Inc., e como base para o projeto Holtzberg escolheu o motor T-88 LL23 2.3 OHC que equipava o Ford Pinto (no Brasil, esse mesmo motor equipou os Maverick 4 cilindros). Na época esse era um dos motores pequenos mais fáceis de ser encontrado nos Estados Unidos, e foi escolhido como forma de baratear os primeiros testes de blocos e cabeçotes, ao utilizar-se componentes como eixos virabrequim e comando de válvulas da Ford (como referência, ao evitar o desenvolvimento de um virabrequim prototipal, a economia gerada era de cerca de 80 mil dólares por peça).

Na década de 80 a popularidade do motor foi grande, chegando a ser destaque na famosa revista Popular Science. Apesar da manchete, Matty Holtzberg afirma que a Ford não teve participação no projeto.

Na década de 80 a popularidade do motor foi grande, chegando a ser destaque na famosa revista Popular Science. Apesar da manchete, Matty Holtzberg afirma que a Ford não teve participação no projeto. Fonte: Popular Science [1].

Esse motor, chamado informalmente de Polimotor 1 possuía componentes como bloco, cabeçote, varetas, bielas e saias de pistão feitas de uma resina criada pela Amoco Chemicals Co., o Torlon, uma poliamida-imida, com elevadas propriedades de moldabilidade, resistência e a ataques químicos, além de excepcionalmente alta resistência ao calor.

Vista em corte da primeira versão do Polimotor. Fonte: [1].

Vista em corte da primeira versão do Polimotor. Fonte: Popular Science [1].

Após o sucesso dos primeiros testes, faltava convencer o público e as montadoras da robustez do conceito. Para esse fim, foi desenvolvido o Polimotor Model 234, uma versão DOHC baseada no design do motor do Ford Pinto (e que curiosamente – ou não – divide algumas semelhanças com o motor Cosworth BDA, outra variação sobre a família Ford T-88). Esse motor foi instalado em um chassi Lola T616 para disputar a categoria C2 do IMSA Camel GT Championship, e pesando cerca de 69 kg, o motor era cerca de 50% mais leve que um Cosworth equivalente, com potência máxima de 318 hp a 9.200 rpm, e corte de giros em 14.000 rpm. Durante a fase de desenvolvimento foram testados bielas e virabrequins de Torlon, além de pistões compósitos com saias poliméricas e topos de alumínio. Contudo, o motor que competiu utilizava virabrequim e bielas de aço forjado, e pistões convencionais de alumínio, mas ainda assim contava com diversos componentes poliméricos: a curiosa solução de cárter integrado ao bloco do motor, com camisas de ferro fundido (similares as utilizadas em motores com bloco de alumínio), cabeçote com insertos metálicos para as câmaras de combustão, hastes das válvulas de admissão, tuchos, pinos de pistão, tampa de válvulas, engrenagem de eixo comando e virabrequim.

Imagem do Polimotor utilizado no IMSA. Fonte: [2].

Imagem do Polimotor utilizado no IMSA. Fonte: Duddha.me [2].

O patrocínio foi providenciado pela Amoco, que na época estava interessada em divulgar as capacidades do recém desenvolvido Torlon, e a estréia da equipe Polimotor research se deu em julho de 1984, nas 6 Horas de Watkings Glenn. O carro classificou-se em uma distante 41ª posição, e no dia da corrida ocorreu uma falha no motor antes mesmo que o carro pudesse completar uma volta. Depois disso vieram as 500 Milhas em Road America, que resultaram em 59ª posição no grid de largada, e novamente em abandono por razões não identificadas. Em 1984 a equipe ainda participaria da prova de 500 km em Watkins Glen, resultando novamente em abandono.

Detalhe da instalação do Polimotor. Fonte: duddha.me [3].

Detalhe da instalação do Polimotor. Fonte: duddha.me [2].

Para 1985 o time voltou, mas o resultado nas duas primeiras provas repetiu aquilo que havia ocorrido no ano anterior. Contudo, em maio veio a prova de 2 Horas em Lime Rock, de menor duração e também com poucos inscritos (cinco na categoria Lights onde o time da Polimotor competia). Dessa vez o carro finalmente conseguiu chegar ao fim (a 19 voltas do vencedor da categoria, diga-se de passagem), mas vale salientar que foi um dos três que conseguiu finalizar a prova, garantindo o primeiro pódio para um carro equipado com motor plástico. Após essa prova vieram os 500 Km de Mid-Ohio, que voltaram a resultar em abandono (mas que ainda assim foi a 5ª posição em 8 inscritos). A última prova da qual a Polimotor participou foram as 500 Milhas em Road America, e dessa vez tudo correu surpreendentemente  bem: nos treinos a equipe conseguiu classificar o carro em 4º dentro da categoria, e no final da prova também pode atingir a 4ª colocação, a apenas 6 voltas do vencedor da categoria Lights. Mesmo com esses resultados e a grande exposição na mídia, a verdade é que nenhum fabricante de automóveis se interessou pelo conceito, o que acabou levando o conceito do Polimotor para a gaveta das boas idéias que acabam não se realizando. Após sua aposentadoria, a Amoco utilizou o T616 em programas de recrutamento em universidades até 1996, e hoje o modelo se encontra em uma coleção particular, mas sem seu motor de plástico.

Lola T616 equipado com o Polimotor na pista. Fonte: drive2.ru [4].

Lola T616 equipado com o Polimotor na pista. Fonte: drive2.ru [3].

Histórico em competições:

1984
CORRIDA  PILOTO POSIÇÃO
1 Hora de Lime Rock Não compareceu
6 Horas de Watkins Glenn  Peter Kuhn  Abandonou
500 Milhas de Road America Peter Kuhn Abandonou
500 Quilômetros de Watkins Glenn Peter Kuhn 35º (15º na categoria GTP)
1985
500 Quilômetros de Road Atlanta Tim Coconis / Peter Argetsinger Abandonou
600 Quilômetros de River Side Tim Coconis Abandonou
2 Horas de Lime Rock Peter Argetsinger 11º (3º na categoria GTP Lights)
500 Quilômetros de Mid-Ohio  Peter Argetsinger / Michael Argetsinger Abandonou
500 Milhas de Road America Peter Argetsinger / Herm Johnson 17º (4º na categoria GTP Lights)

Polimotor 2

Porém, esse hiato no conceito de motores de plástico durou até 2015, quando a multinacional do setor químico Solvay (que entre outras, é hoje proprietária da Amoco), resolveu que ressuscitar o projeto do motor em plástico seria uma plataforma ideal para marketing da sua nova linha de polímeros.

Polimotor 2, dessa vez desenvolvido com o apoio da Solvay. Fonte: [3].

Polimotor 2, dessa vez desenvolvido com o apoio da Solvay. Fonte: Solvay [4].

Para tanto eles chamaram Matty Holtzberg para novamente liderar o projeto, que terá como ponto de partida o bloco original, mas dessa vez com um turbocompressor, e com sistema de injeção eletrônica em substituição ao sistema Kugelfischer de injeção mecânica que era usado na década de 80. O objetivo da Solvay é utilizar o máximo de componentes fabricados com os polímeros da empresa, tais como bombas de água e de óleo, corpo da borboleta, coletor de admissão, galeria de combustível, engrenagens do sistema de sincronismo e tubulações de arrefecimento.

Nessa nova versão, a meta é atingir entre 420 e 450 hp a 8000 rpm, com um peso na faixa de 63-67 kg (para efeito de comparação, um motor 1.0 3 cilindros da nova geração, com bloco de alumínio pesa cerca de 90 kg). Apesar do ganho em peso, o conceito de motor plástico apresenta uma grande desvantagem em relação aos convencionais: para que funcione com confiabilidade o sistema de arrefecimento tem que ser mais robusto que o normal, o que implica em perdas aerodinâmicas em relação a outras aplicações. A Solvay pretende instalar o motor em um protótipo Norma M20, que então passará por vários testes durante 2016 até que possa estrear em competição.

Norma M20 que deverá receber o Polimotor 2 ainda em 2016. Fonte: Solvay [3].

Norma M20 que deverá receber o Polimotor 2 ainda em 2016. Fonte: Solvay [4].

Fontes:

Magda, Mike; Plastic Race Engine Returns as Polimotor 2 Project Underway, disponível em: http://www.enginelabs.com/news/plastic-race-engine-returns-as-polimotor-2-project-underway/. Acessado em: 05/04/2016.

#Tech – Polimotor or Plastic and Racing Engine, disponível em: https://duddha.me/2014/07/21/polimotor-plastic-and-racing-engine/.Acessado em: 06/04/2016.

Keebler, Jack; Ford’s impossible plastic engine, disponível em: https://books.google.com.br/books?id=FzCnbu4xM0YC&pg=PA71&lpg=PA71&dq=popular+science+polimotor&source=bl&ots=-ZIZcXc33f&sig=nwGq9e8HiwThD4L1Xs6O7OBoa_0&hl=pt-BR&sa=X&ved=0ahUKEwiQvryI2ffLAhWJthoKHVNiAroQ6AEIIzAA#v=onepage&q=popular%20science%20polimotor&f=false. Acessado em: 08/04/2016.

McCosh, Dan; Automotive Newsfront, disponível em: https://books.google.com.br/books?id=4DkGrUmHwRYC&pg=PA16&lpg=PA16&dq=popular+science+polimotor&source=bl&ots=N4__zgAMSo&sig=KOhlBaU5K0DoWTEuf8aesu2t0gs&hl=pt-BR&sa=X&ved=0ahUKEwiQvryI2ffLAhWJthoKHVNiAroQ6AEIJzAB#v=onepage&q=popular%20science%20polimotor&f=false. Acessado em 08/04/2016.

Bob Roemer tells the story of the IMSA T616-Polimotor, the racing car with the plastic engine!, disponível em: http://www.lolaheritage.co.uk/scrapbook/004/004.htm. Acessado em 08/04/2016.

The all plastic rececar engine, Polimotor 2, to us Solvay 3D printing powders, disponível em: http://www.tctmagazine.com/3D-printing-news/the-all-plastic-racecar-engine-polimotor-2-to-be/. Acessado em 09/04/2016.

Solvay materials fuel breakthrough innovation of “Polimotor 2” all-plastic car engine, disponível em: http://www.solvay.com/en/media/press_releases/20150518-Polimotor.html. Acessado em: 09/04/2016.

Histórico de competições extraído de Racing Sports Cars: http://www.racingsportscars.com/cars/search-archive.html?make=Lola&eng=Polimotor. Acessado em: 14/04/2016.Imagens

[1]: Retirado de: Keebler, Jack; Ford’s impossible plastic engine, disponível em: https://books.google.com.br/books?id=FzCnbu4xM0YC&pg=PA71&lpg=PA71&dq=popular+science+polimotor&source=bl&ots=-ZIZcXc33f&sig=nwGq9e8HiwThD4L1Xs6O7OBoa_0&hl=pt-BR&sa=X&ved=0ahUKEwiQvryI2ffLAhWJthoKHVNiAroQ6AEIIzAA#v=onepage&q=popular%20science%20polimotor&f=false. Acessado em: 08/04/2016.

[2]: Retirado de: #Tech – Polimotor or Plastic and Racing Engine, disponível em: https://duddha.me/2014/07/21/polimotor-plastic-and-racing-engine/.Acessado em: 06/04/2016.

[3]: Retirado de: https://www.drive2.ru/b/953074/. Acessado em 18/04/2016.

[4]: Retirado de: Solvay materials fuel breakthrough innovation of “Polimotor 2” all-plastic car engine, disponível em: http://www.solvay.com/en/media/press_releases/20150518-Polimotor.html. Acessado em: 09/04/2016.

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

O que significam os cavalos do motor de um automóvel?

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Por muitas vezes você já deve ter ouvido algo do tipo: Novo carro possui o motor mais potente da categoria, afirmação sempre acompanhada por um número X de cavalos. Mas afinal, o que são esses cavalos e como eles impactam o desempenho dos nossos carros? Continuar lendo

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

O fim do tanquinho de gasolina

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn

Com o início da crise do petróleo em 1973, diversos países buscaram alternativas para as suas necessidades de combustíveis. No Brasil, a resposta foi a criação do Pró-Álcool em 1975, que visava a substituição em larga escala do uso de combustíveis fósseis em veículos em prol do uso do etanol derivado da cana-de-açúcar. Continuar lendo

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn